Detecting early stage breast cancer using low-depth cell-free DNA fragmentomics: A multi-center cohort study.

Authors

Jiaqi Liu

Jiaqi Liu

Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China

Jiaqi Liu , Yalun Li , Wanxiangfu Tang , Xiang Wang , Ziqi Jia , Tianyi Qian , Yansong Huang , Shiting Tang , Haimeng Tang , Hua Bao , Shuang Chang , Xue Wu , Yang Shao

Organizations

Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China, Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China

Research Funding

Other Foundation
National Natural Science Foundation of China, CAMS Innovation Fund for Medical Sciences

Background: Breast cancer (BC) has contributed to the most cancer-related mortalities among females in 2020. Early detection using breast imaging methods, such as mammography and ultrasound, has significantly improved patients' survival. However, these early-screening methods suffer from high false-positive rates, resulting in many unnecessary biopsies which add to patients' discomfort. Cell-free DNA (cfDNA) fragmentomics assays have recently illustrated prominent abilities for detecting various cancer. In this multi-center prospective cohort study, we aim to develop a non-invasive liquid biopsy assay utilizing cfDNA fragmentomics and machine learning for detecting early-stage BC patients. Methods: We recruited 402 female patients (234 with BC and 168 with benign nodules [BN]) from the Yantai Yuhuangding Hospital (training cohort, N = 193, 91 BC and 102 BN) and the Cancer Hospital of the Chinese Academy of Medical Sciences (independent validation cohort, N = 209, 143 BC and 66 BN). Surgical or core needle biopsies were performed for all 402 patients following positive breast imaging results by mammography and ultrasound. Each patient's malignant or benign status was then pathologically confirmed using the tissue specimen. Women with negative biopsy results were excluded from breast cancer through a 6-month follow-up. The fragmentomics profiles, which were generated using plasma cfDNA WGS data (~5X), were used by our machine-learning algorithm. An automated machine learning approach was deployed to optimize base models before being ensembled into the final predictive model. Results: Our predictive model showed excellent performance in discriminating BCs from BNs, reaching an Area Under the Curve (AUC) of 0.816 and 0.811 in the training cohort (5-fold cross-validation) and the independent validation cohort, respectively. It achieved 74.1% sensitivity (95% CI: 66.1-81.1%) at 81.8% specificity (95% CI: 70.4-90.2%) in the validation cohort. In a potential clinical setting, our model could detect 53.0% (95% CI: 40.3-65.4%) false positives from the breast imaging methods at a targeted 90% sensitivity (89.5%, 95% CI:83.3–94.0%), which could theistically reduce more than half of the unnecessary biopsies. Moreover, our model illustrated great predictive power (AUC = 0.830) among small nodules (≤ 1cm), which were difficult to distinguish by the traditional imaging methods (AUC = 0.690). Finally, our model maintained its predictive power during a down-sampling process, even using 2X WGS data in the independent validation cohort (mean AUC: 0.789, 0.781-0.798). Conclusions: Our non-invasive liquid biopsy assay, which utilized low-depth cfDNA fragmentomics profiling and machine learning, can distinguish malignant nodules from benign nodules. The highlight of our model is its ability to prevent unnecessary biopsies among patients with false positive breast imaging results.

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2023 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Developmental Therapeutics—Molecularly Targeted Agents and Tumor Biology

Track

Developmental Therapeutics—Molecularly Targeted Agents and Tumor Biology

Sub Track

Molecular Diagnostics and Imaging

Citation

J Clin Oncol 41, 2023 (suppl 16; abstr 3075)

DOI

10.1200/JCO.2023.41.16_suppl.3075

Abstract #

3075

Poster Bd #

273

Abstract Disclosures

Similar Abstracts

First Author: June Evelyn Jeon

Abstract

2023 ASCO Annual Meeting

Circulating tumor DNA (ctDNA) and disease recurrence in early stage pancreatic cancer.

First Author: Zimu Gong

First Author: Jeanne Tie