Phase I/II study of dianhydrogalactitol in patients with recurrent malignant glioma or progressive secondary brain tumor.

Authors

null

James D. Peyton

Sarah Cannon Research Institute; Tennessee Oncology, Nashville, TN

James D. Peyton , Howard A. Burris III, Jeffrey A. Bacha , Dennis Brown , William J. Garner , Richard Stephen Schwartz , Kent C. Shih

Organizations

Sarah Cannon Research Institute; Tennessee Oncology, Nashville, TN, Del Mar Pharmaceuticals, Vancouver, BC, Canada

Research Funding

Pharmaceutical/Biotech Company

Background: Recurrent glial tumors of the brain continue to be one of the most challenging malignancies to treat, and median survival for patients with recurrent disease is approximately 6 months for glioblastoma multiforme (GBM). The front-line therapy for GBM - temozolomide (TMZ) - is subject to resistance by DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), leading to poor prognoses for patients with recurrent GBM. Dianhydrogalactitol (VAL-083)is a first-in-class bi-functional N7 DNA alkylating agent shown to cross the blood-brain barrier, accumulate in brain tissue, and have activity against GBM. Studies suggest that VAL-083 overcomes MGMT-driven drug resistance in vitro and targets cancer stem cells. The purpose of this study is to determine the maximal tolerated dose (MTD) of VAL-083 in patients with recurrent GBM or progressive secondary brain tumor, and explore the safety, pharmacokinetics and tumor responses to treatment. Methods: Open-label phase I/II dose-escalation study of VAL-083 in patients with histologically confirmed primary WHO grade 4 malignant GBM, now recurrent, previously treated for GBM with surgery and/or radiation, if appropriate, and have failed both bevacizumab and temozolomide; or progressive secondary brain tumor, has failed standard brain radiotherapy, and has brain tumor progression after at least one line of systemic therapy. The study uses a 3 + 3 dose escalation design, until reaching the MTD or maximum specified dose. Patients receive IV VAL-083 on days 1, 2, and 3 of each 21-day treatment cycle. In phase II, additional patients are treated at the MTD (or selected optimum dose) to measure tumor responses. Results: Cohort 1 (3 patients) and cohort 2 (4 patients) were completed without any DLT’s. Adverse events (AEs) have all been grade 1/2, with only 1 grade 3 AE, unrelated to treatment. Cohort 3 currently has 4 patient enrolled, without reaching the MTD. 1/7 (14.3%) patients in cohorts 1and 2 has prolonged stable disease (15+ cycles) on VAL-083 treatment. Conclusions: VAL-083 up to the 2nd dose level was well tolerated without any safety signals. Dose escalation is continuing. Clinical trial information: NCT01478178.

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2013 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Central Nervous System Tumors

Track

Central Nervous System Tumors

Sub Track

Central Nervous System Tumors

Clinical Trial Registration Number

NCT01478178

Citation

J Clin Oncol 31, 2013 (suppl; abstr 2093)

DOI

10.1200/jco.2013.31.15_suppl.2093

Abstract #

2093

Poster Bd #

8A

Abstract Disclosures

Similar Abstracts