Association of machine learning (ML)–derived histological features with transcriptomic molecular subtypes in advanced renal cell carcinoma (RCC).

Authors

null

Niha Beig

Genentech, South San Francisco, CA

Niha Beig , Shima Nofallah , David F. McDermott , Robert J. Motzer , Thomas Powles , Brian I. Rini , Hartmut Koeppen , Romain Banchereau , Miles Markey , Isaac Finberg , Geetika Singh , Limin Yu , Robert Egger , Chintan Parmar , Jake Conway , Stephanie Hennek , Daniel Ruderman , Samuel Vilchez , Mahrukh A Huseni , Jennifer Margaret Giltnane

Sign-In to See More Abstracts, Journal Articles, Posters, Videos and Slides and to Bookmark Your Favorite Content.

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Poster Details

Meeting

2024 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Genitourinary Cancer—Kidney and Bladder

Track

Genitourinary Cancer—Kidney and Bladder

Sub Track

Biologic Correlates

Citation

J Clin Oncol 42, 2024 (suppl 16; abstr 4519)

DOI

10.1200/JCO.2024.42.16_suppl.4519

Abstract #

4519

Poster Bd #

214

Abstract Disclosures

Similar Posters

Poster

2020 Genitourinary Cancers Symposium

Molecular characteristics of renal cell carcinoma (RCC) risk groups from JAVELIN Renal 101.

Molecular characteristics of renal cell carcinoma (RCC) risk groups from JAVELIN Renal 101.

First Author: Toni K. Choueiri

First Author: Nusrat Jahan