Improving lung cancer health equity by applying deep learning to low dose CT screening of minority and disadvantaged patients.

Authors

null

Abdul Zakkar

University of Illinois at Chicago Cancer Center, Chicago, IL

Abdul Zakkar , Alexander Krule , Mehak Miglani , VK Gadi , Kevin Kovitz , Mary Pasquinelli , Frank Weinberg , Yamile Molina , Sage J Kim , Aly Khan , Ryan Huu-Tuan Nguyen , Ameen Abdulla Salahudeen

Organizations

University of Illinois at Chicago Cancer Center, Chicago, IL, University of Illinois at Chicago, Chicago, IL, University of Illinois at Chicago College of Medicine, Division of Medical Oncology, Chicago, IL, University of Illinois Hospital and Health Sciences System, Chicago, IL, University of Illinois College of Medicine, Chicago, IL

Research Funding

No funding sources reported

Background: In the US, disparities in lung cancer mortality exist for African American, Hispanic, and other minorities. Standard of care low dose CT screening (LDCT) detects early-stage disease and improves mortality, yet disparities are perpetuated in screening by eligibility criteria derived from cohorts underrepresenting these minorities. One such cohort is the National Lung Screening Trial (NLST) cohort which is 92% White. Consequently, guidelines for lung cancer screening may be insufficient to address the unique needs of diverse populations. We hypothesize that Artificial Intelligence prediction of future lung cancer risk from an individual’s LDCT can partially mitigate racial and ethnic disparities and improve health system practice guidelines by individualizing screening risk as compared to current general guidelines. Here, we benchmark a Resnet18 3D neural network trained on NLST LDCT images, Sybil, on the diverse patient population of the University of Illinois Health system (UIH) which is 20% White and 60% African American. Methods: A real-world cohort from UIH consisting of 1,450 CT studies was evaluated alongside 60,378 CT studies from the NLST cohort. All CT studies evaluated by the model were not used in model training. Using Youden’s J index as a probability cutoff, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were evaluated. Receiver operating characteristic (ROC) and precision-recall (PR) curves were generated to assess model performance between cohorts. NLST data were truncated to achieve equivalent incidence of lung cancer with UIH when generated PR curves. Results: Multi-year prediction performance (ROC-AUC and PR-AUC) between cohorts are summarized (Table). For prediction of lung cancer within 1-year of LDCT in the UIH cohort, the model respectively demonstrated sensitivity, specificity, positive predictive value, and negative predictive value among White (0.80, 0.77, 0.54, 0.92), African American (0.84, 0.78, 0.39, 0.97) races and Hispanic (0.75, 0.73, 0.60, 0.84) and non-Hispanic (0.87, 0.77, 0.42, 0.97) ethnicities. Conclusions: Model performance was similar between the NLST (92% White) and a diverse, real-world cohort at UIH (20% White) though decreases in ROC-AUC performance in year 1 predictions and may be due to insufficient representation of minority populations during model training. Prospective studies involving larger and more representative patient populations should be conducted to further optimize the model and evaluate its clinical utility to improve lung cancer health equity in minority populations.

Model performance in NLST versus UIH cohorts.

Year
diagnosed
NLST
ROC-AUC
UIH
ROC-AUC
NLST
PR-AUC
UIH
PR-AUC
Year 10.940.870.590.62
Year 20.860.850.530.68
Year 30.820.850.540.69
Year 40.790.840.570.70
Year 50.780.840.610.70
Year 60.770.830.630.70

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2024 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Care Delivery/Models of Care

Track

Care Delivery and Quality Care

Sub Track

Disparities in Care

Citation

J Clin Oncol 42, 2024 (suppl 16; abstr 1584)

DOI

10.1200/JCO.2024.42.16_suppl.1584

Abstract #

1584

Poster Bd #

455

Abstract Disclosures

Similar Abstracts

First Author: Hina Khan

Abstract

2023 ASCO Annual Meeting

Rates of colorectal cancer screening versus lung cancer screening: Where does the problem lie?

First Author: Sasmith R. Menakuru