Phase II study of hemithoracic intensity-modulated pleural radiation therapy (IMPRINT) for patients with pleural metastases from thymic malignancies.

Authors

Andreas Rimner

Andreas Rimner

Memorial Sloan Kettering Cancer Center, New York, NY

Andreas Rimner , James Huang , Andrew Pagano , Michelle S. Ginsberg , Jason C. Chang , Gregory J. Riely , Charles B. Simone II, Daniel Richard Gomez , Annemarie Shepherd

Organizations

Memorial Sloan Kettering Cancer Center, New York, NY, MSKCC, New York, NY, New York Proton Center, New York, NY, Memorial Sloan Kettering Cancer Center at Basking Ridge New Jersey, Bernards, NJ

Research Funding

Institutional Funding
Memorial Sloan Kettering Cancer Center

Background: Pleural metastases are common sites for recurrence and progression in patients with thymic malignancies. The management of pleural metastases typically involves surgical resection with or without neoadjuvant or adjuvant systemic therapy. After surgical resection of pleural metastases, the 5-year progression-free survival (PFS) rate is about 29-45%. While radiation therapy (RT) is standardly used in the management of locally-advanced thymic malignancies, the role of RT in patients with pleural metastases in unclear. Intensity-modulated pleural radiation therapy (IMPRINT) is a RT technique currently being used to treat malignant pleural mesothelioma (MPM) patients with 2 intact lungs at centers that specialize in MPM treatment. This IMPRINT technique can potentially be extrapolated to thymic patients with pleural metastases. Because the risk of toxicity is of greater concern for thymic patients given their overall relatively favorable prognosis, the rate of toxicity, particularly radiation pneumonitis, needs to be established in the thymic patient population. Methods: This is a single-arm, single institution Phase II study of hemithoracic IMPRINT for patients with pleural metastases from thymic malignancies. The primary endpoint of this study is grade 3 or higher radiation pneumonitis within 4 months of completing RT. Secondary endpoints include any toxicity, progression-free survival, patterns of failure and overall survival. Patients must have a pathologically confirmed diagnosis of a thymic malignancy with radiologic or pathologic evidence of pleural metastases. Thymoma or thymic carcinoma are allowed. Patients may have de novo stage IVA disease or recurrent disease in the pleura. There must be no evidence of extrathoracic metastatic disease or contralateral pleural/pericardial disease. Surgical resection of the pleural nodules (ex: pleurectomy/decortication, debulking/metastasectomy) are allowed. Extrapleural pneumonectomy is not allowed. Patients are excluded if they have undergone prior thoracic radiation therapy preventing hemithoracic pleural IMRT, whereas prior thymic bed radiation and/or prior pleural SBRT are allowed. RT will be administered to the ipsilateral pleura to 50.4 Gy in 28 fractions. An optional dose-painting boost to gross disease up to 60 Gy while respecting normal tissue constraints is allowed. Patients can be treated with photon or proton therapy. Simulation, contouring and RT planning guidelines have been developed. Patients will be followed per protocol at regular intervals for at least 12 months following RT. The expected accrual is 36 patients over 4 years. Further information can be found on clinicaltrials.gov (NCT05354570). Clinical trial information: NCT05354570.

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2023 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Lung Cancer—Non-Small Cell Local-Regional/Small Cell/Other Thoracic Cancers

Track

Lung Cancer

Sub Track

Thymic Malignancies

Clinical Trial Registration Number

NCT05354570

Citation

J Clin Oncol 41, 2023 (suppl 16; abstr TPS8616)

DOI

10.1200/JCO.2023.41.16_suppl.TPS8616

Abstract #

TPS8616

Poster Bd #

234b

Abstract Disclosures