Artificial intelligence (AI) –based machine learning models (ML) for predicting pathological complete response (pCR) in patients with hormone receptor (HoR) –positive/HER2-negative early breast cancer (EBC) undergoing neoadjuvant chemotherapy (NCT): A retrospective cohort study.

Authors

null

Luca Mastrantoni

Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli–IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy

Luca Mastrantoni , Giovanna Garufi , Noemi Maliziola , Elena Di Monte , Giorgia Arcuri , Valentina Frescura , Angelachiara Rotondi , Giulia Giordano , Luisa Carbognin , Alessandra Fabi , Ida Paris , Fabio Marazzi , Franco Antonio , Gianluca Franceschini , Armando Orlandi , Antonella Palazzo , Giovanni Scambia , Giampaolo Tortora , Emilio Bria

Sign-In to See More Abstracts, Journal Articles, Posters, Videos and Slides and to Bookmark Your Favorite Content.

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Poster Details

Meeting

2023 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Breast Cancer—Local/Regional/Adjuvant

Track

Breast Cancer

Sub Track

Neoadjuvant Therapy

Citation

J Clin Oncol 41, 2023 (suppl 16; abstr 597)

DOI

10.1200/JCO.2023.41.16_suppl.597

Abstract #

597

Poster Bd #

427

Abstract Disclosures

Similar Posters

Poster

2012 ASCO Annual Meeting

Racial differences in outcomes of triple-negative breast cancer.

Racial differences in outcomes of triple-negative breast cancer.

First Author: Jose Pacheco

First Author: Lorenza Mittempergher