Clinicopathologic characterization of ERK2 E322K mutation in solid tumors: Implications for treatment and drug development.

Authors

null

Dazhi Liu

Memorial Sloan Kettering Cancer Center, New York, NY

Dazhi Liu , Yonina R. Murciano-Goroff , Justin Jee , Maria E. Arcila , Darren J. Buonocore , JianJiong Gao , Debyani Chakravarty , Alison M. Schram , Margaret K. Callahan , Claire Frances Friedman , Komal L. Jhaveri , James J. Harding , Mrinal M. Gounder , Ezra Rosen , Neal Rosen , Sandra Misale , Piro Lito , Rona Yaeger , Alexander E. Drilon , Bob T. Li

Organizations

Memorial Sloan Kettering Cancer Center, New York, NY, Memorial Sloan Kettering Cancer Center and Weill Medical College at Cornell University, New York, NY, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, Memorial Sloan-Kettering Cancer Center, New York, NY

Research Funding

U.S. National Institutes of Health

Background: MAPK1 encodes ERK2, a kinase component of the mitogen activated signaling (MAPK) pathway. ERK2 E322K is a known activating mutation that leads to increased phosphorylation and ERK signaling. In vitro studies found this mutation to be associated with resistance to dabrafenib, trametinib, but potential sensitivity to ERK inhibitors. Despite its potential as a drug target, little is known about the clinicopathologic characteristics of this hotspot mutation across solid tumors. Methods: Patients with solid tumors underwent tumor next-generation sequencing at Memorial Sloan Kettering Cancer Center between Jan 2015 and Sep 2020 using the MSK-IMPACT assay. Using the cBioPortal database and clinical charts, we analyzed tumors harboring MAPK1/ERK2 E322K mutations, assessed their clinicopathologic characteristics, co-mutational status and overall survival (OS). OS was measured from time of tumor sequencing to date of death or last follow-up. Results: A total of 37 tumor samples from 35 patients were identified in 59,822 tumors sequenced (0.06%) to harbor an ERK2 E322K mutation. The distribution across tumor types was as follows: head and neck squamous cell carcinoma (29%), bladder cancer (20%), lymphomas (9%), colorectal cancers (9%), gastric cancers (9%), cholangiocarcinoma (6%), cervical cancers (6%), lung cancers (6%), germ cell tumor (3%), Merkel cell carcinoma (3%), and breast cancers (3%). The OS in patients with metastatic disease and ERK2 E322K was 22.29 months (95%CI: 7.56-NA) months. Other mutations in RAS pathway frequently co-occurred with ERK2 E322K mutation (17/37, 46%). Concurrent mutations are also involved in pathways of cell cycle (71%), PI3K (71%), TP53 (66%), NOTCH (57%), RTK (51%), HIPPO (29%), TGF-beta (29%), WNT (26%), NRF2 (20%), MYC (14%). The median TMB score of samples from solid malignancies was 12.3 (range:0-101, quartiles: 6.9-33.0) mutation/Mb. Two patients (2/35, 6%) had microsatellite-instability high (MSI-H) tumors. The most frequent concurrent activating mutations include ARID1A (29%), FBXW7 (26%), PI3KCA (22%), PI3KR1/2/3 (20%), CDKN2A (11%), PTEN (8%), BRCA1/2(8%), FGFR3 (8%), BRAF (6%), Only one of these 35 patients received treatment targeting BRAF/MEK/ERK pathway and achieved partial response. One patient with NSCLC harboring a concurrent EGFR L858R mutation did not respond to erlotinib. One patient with PI3KCA mutated head and neck cancer did not respond to PI3K inhibitor. Two patients had TMB score of 100.9 and 12.9 mutation/Mb had partial response to pembrolizumab. Conclusions: ERK2 E322K mutation is a rare oncogenic mutation across diverse solid tumor types, associated with a high co-occurrence of other activating mutations and a high TMB. The lack of response to other targeted therapies suggests ERK2 E322K is a potential driver mutation. These findings may inform treatment and further development of ERK inhibitors.

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2022 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Developmental Therapeutics—Molecularly Targeted Agents and Tumor Biology

Track

Developmental Therapeutics—Molecularly Targeted Agents and Tumor Biology

Sub Track

Tissue-Based Biomarkers

Citation

J Clin Oncol 40, 2022 (suppl 16; abstr 3135)

DOI

10.1200/JCO.2022.40.16_suppl.3135

Abstract #

3135

Poster Bd #

127

Abstract Disclosures