Differentiated activity profile for the PD-1 inhibitor balstilimab.

Authors

null

Cailin Joyce

Agenus Inc., Lexington, MA

Cailin Joyce , Dhan Chand , Benjamin Duckless , Manuel Hidalgo , Joseph Elan Grossman , Remigiusz Kaleta , David M. O'Malley

Organizations

Agenus Inc., Lexington, MA, Agenus Inc, Lexington, MA, Weill Cornell Medicine, New York, NY, The Ohio State University Wexner Medical Center and James Cancer Hospital, Columbus, OH

Research Funding

Pharmaceutical/Biotech Company
Agenus Inc

Background: The development and clinical application of immune checkpoint inhibitors has transformed the therapeutic landscape for cancer treatment in recent years. Balstilimab (AGEN2034) is a fully human, monoclonal IgG4 antibody that binds with high affinity to programmed death 1 (PD-1), thus preventing the interaction between this receptor and its ligands programmed death ligand 1 and 2 (PD-L1, PD-L2). Emerging evidence suggests that balstilimab exhibits a differentiated activity profile compared to currently approved anti-PD-1 agents, including pembrolizumab and nivolumab. Methods: Balstilimab as monotherapy was evaluated in a large phase 2 study in patients (pts) with recurrent/metastatic cervical cancer who had relapsed after a platinum-based treatment regimen for advanced disease. Pts were dosed at 3 mg/kg once every 2 weeks for up to 24 months and antitumor activity was assessed using RECIST v1.1. The tumor cell killing activity of balstilimab was evaluated preclinically in a human co-culture system of (1) primary T cells engineered to recognize NY-ESO-1 and (2) NY-ESO-1+ cancer cell lines, including PD-L1 and/or PD-L2-deficient engineered lines. The co-culture system was maintained for ̃ two weeks to drive partial T cell exhaustion; a state where cytotoxicity is compromised but recoverable with PD-1 blockade. Cytotoxicity of these partially exhausted T cells was quantified against PD-L1/L2 double positive, single positive, or double negative cancer cells in the presence or absence of PD-(L)1 antibodies. Results: In the second-line treatment setting for pts with advanced cervical cancer, balstilimab showed a numerically higher objective response rate (ORR) in subjects with PD-L1+, squamous cell carcinoma (SCC) tumors (21%, 95% CI, 12.7-32.6%) than those reported for pembrolizumab. Unlike pembrolizumab, balstilimab showed activity in PD-L1(-) pts, and irrespective of tumor histology (ORR 7.9%, 95% CI, 2.7-20.8%). Despite lower overall PD-L1 positivity compared to SCC (41.7 v 72.9%), an ORR of 12.5% (95% CI, 5.9-24.7%) was observed in the subset of pts with a poorer prognosis, those with cervical adenocarcinoma. Concordant with clinical observations, balstilimab demonstrated superior rescue of antigen-specific T cell cytotoxicity in vitro relative to pembrolizumab, nivolumab, or atezolizumab. Balstilimab also induced cytotoxicity against PD-L1 and/or PD-L2 deficient target cancer cells. Conclusions: Taken together, these data suggest functional differentiation of balstilimab from other PD-1 inhibitors with potentially important implications for extending the therapeutic reach of anti-PD-1 therapy. Investigation of the underlying mechanistic basis for these findings is ongoing. Clinical trial information: NCT03104699

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2021 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Gynecologic Cancer

Track

Gynecologic Cancer

Sub Track

Cervical Cancer

Clinical Trial Registration Number

NCT03104699

Citation

J Clin Oncol 39, 2021 (suppl 15; abstr 5529)

DOI

10.1200/JCO.2021.39.15_suppl.5529

Abstract #

5529

Poster Bd #

Online Only

Abstract Disclosures

Similar Abstracts

First Author: Joseph Mabbitt

Abstract

2022 ASCO Annual Meeting

Effect of new strains of rotaviruses on PD1 and PD-L1 expression on peripheral blood T cells.

First Author: Anastasia O. Sitkovskaya

Abstract

2022 ASCO Annual Meeting

Pan-cancer landscape of CD274 (PD-L1) and PDCD1LG2 (PD-L2) structural variations.

First Author: Emily Louise Hoskins

Abstract

2024 ASCO Genitourinary Cancers Symposium

Preclinical testing of a novel PD-L1 inhibitor for the treatment of renal cell carcinoma.

First Author: Michelle Hsu