Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
Alison Stopeck , Celestia S. Higano , David H. Henry , Basia A. Bachmann , Marko Rehn , Dionna Jacobson , Benoit Cadieux
Background: The anti-RANKL monoclonal antibody denosumab has been shown to be superior to the bisphosphonate zoledronate for the prevention of skeletal-related events (SREs) in patients with incident bone metastases (BM) from solid tumors (ST). Clinical guidelines recommend the use of a bone-targeting agent for SRE prevention for ≥ 2 years. However, real-world treatment patterns in the U.S. suggest that the denosumab treatment duration is often < 1 year. Applying a machine learning approach, we sought to identify risk factors associated with SRE incidence following cessation of denosumab to help inform optimal clinical SRE prevention strategies. Methods: Using the Optum PanTher Electronic Health Record repository, patients diagnosed with incident BM from a primary ST between 1 Jan 2007 and 1 Sep 2019 were evaluated for inclusion in the study. Eligible patients had to receive ≥ 2 consecutive 120 mg denosumab doses on an every 4-week (± 14 days) schedule and have a minimum follow-up ≥ 1 year after the last denosumab dose or an SRE occurring between days 84 and 365 after denosumab cessation. Extreme gradient boosting was used to develop an SRE risk prediction model evaluated on a test dataset. Impact and relative importance of available medical, clinical, and treatment factors on SRE risk following denosumab cessation were extracted from the model using Shapley additive explanations (SHAP). Univariate analyses on risk factors with the highest importance from pooled and tumor-specific models were also conducted. Results: A total of 1,414 patients (breast, n = 563 [40%]; prostate, 421 [30%]; lung, 180 [13%]; other cancers, 250 [17%]) met inclusion criteria, with a median of 253 (min, 88; max, 2726) days of denosumab treatment; 490 (35%) experienced ≥ 1 SRE following denosumab cessation. With a meaningful model performance based on an area under the receiver operating characteristic (AUROC) score of 77%, SHAP identified several significant factors that predicted an increased SRE risk following denosumab cessation, including prior SREs, shorter denosumab treatment duration, and a higher number of clinic visits as the top-ranked factors (Table). Conclusions: A machine learning approach to SRE risk factor identification may help clinicians better assess the individualized patient’s need for denosumab treatment persistence and improve patient outcomes. Results from tumor-specific groups will be presented at the meeting.
· Prior SREs (e.g., cumulative number, timing) · Denosumab treatment duration (≤ 10 months) ·≥ 4 average monthly clinic visits · Age < 56 years · Initiation of denosumab (≤ 3 months after BM diagnosis) ·≥ 3 unique, anti-cancer drugs prescribed to patient · Prostate cancer · Hypertension · Hospitalization |
Disclaimer
This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org
Abstract Disclosures
2022 ASCO Annual Meeting
First Author: Huiping Li
2023 ASCO Annual Meeting
First Author: Mingchuan Zhao
2023 ASCO Annual Meeting
First Author: Brendan Knapp
2011 ASCO Annual Meeting
First Author: G. E. Richardson