Risk factors associated with skeletal-related events following denosumab cessation among patients with bone metastases from solid tumors: A real-world machine learning approach.

Authors

null

Alison Stopeck

Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY

Alison Stopeck , Celestia S. Higano , David H. Henry , Basia A. Bachmann , Marko Rehn , Dionna Jacobson , Benoit Cadieux

Organizations

Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, Fred Hutchinson Cancer Research Center, Seattle, WA, University of Pennsylvania, Pennsylvania Hospital, Philadelphia, PA, Amgen Inc., Thousand Oaks, CA

Research Funding

Pharmaceutical/Biotech Company
Amgen Inc

Background: The anti-RANKL monoclonal antibody denosumab has been shown to be superior to the bisphosphonate zoledronate for the prevention of skeletal-related events (SREs) in patients with incident bone metastases (BM) from solid tumors (ST). Clinical guidelines recommend the use of a bone-targeting agent for SRE prevention for ≥ 2 years. However, real-world treatment patterns in the U.S. suggest that the denosumab treatment duration is often < 1 year. Applying a machine learning approach, we sought to identify risk factors associated with SRE incidence following cessation of denosumab to help inform optimal clinical SRE prevention strategies. Methods: Using the Optum PanTher Electronic Health Record repository, patients diagnosed with incident BM from a primary ST between 1 Jan 2007 and 1 Sep 2019 were evaluated for inclusion in the study. Eligible patients had to receive ≥ 2 consecutive 120 mg denosumab doses on an every 4-week (± 14 days) schedule and have a minimum follow-up ≥ 1 year after the last denosumab dose or an SRE occurring between days 84 and 365 after denosumab cessation. Extreme gradient boosting was used to develop an SRE risk prediction model evaluated on a test dataset. Impact and relative importance of available medical, clinical, and treatment factors on SRE risk following denosumab cessation were extracted from the model using Shapley additive explanations (SHAP). Univariate analyses on risk factors with the highest importance from pooled and tumor-specific models were also conducted. Results: A total of 1,414 patients (breast, n = 563 [40%]; prostate, 421 [30%]; lung, 180 [13%]; other cancers, 250 [17%]) met inclusion criteria, with a median of 253 (min, 88; max, 2726) days of denosumab treatment; 490 (35%) experienced ≥ 1 SRE following denosumab cessation. With a meaningful model performance based on an area under the receiver operating characteristic (AUROC) score of 77%, SHAP identified several significant factors that predicted an increased SRE risk following denosumab cessation, including prior SREs, shorter denosumab treatment duration, and a higher number of clinic visits as the top-ranked factors (Table). Conclusions: A machine learning approach to SRE risk factor identification may help clinicians better assess the individualized patient’s need for denosumab treatment persistence and improve patient outcomes. Results from tumor-specific groups will be presented at the meeting.

SHAP risk factors that increase risk of SRE 3 to 12 months after denosumab cessation in ST with BM (declining importance).

· Prior SREs (e.g., cumulative number, timing)

· Denosumab treatment duration (≤ 10 months)

·≥ 4 average monthly clinic visits

· Age < 56 years

· Initiation of denosumab (≤ 3 months after BM diagnosis)

·≥ 3 unique, anti-cancer drugs prescribed to patient

· Prostate cancer

· Hypertension

· Hospitalization

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2021 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Care Delivery and Regulatory Policy

Track

Care Delivery and Quality Care

Sub Track

Digital Technology

Citation

J Clin Oncol 39, 2021 (suppl 15; abstr 1567)

DOI

10.1200/JCO.2021.39.15_suppl.1567

Abstract #

1567

Poster Bd #

Online Only

Abstract Disclosures