Resistance to lorlatinib in ROS1 fusion-positive non-small cell lung cancer.

Authors

Jessica Lin

Jessica Jiyeong Lin

Massachusetts General Hospital, Boston, MA

Jessica Jiyeong Lin , Ted Johnson , Jochen K Lennerz , Charlotte Lee , Harper Grace Hubbeling , Beow Y. Yeap , Ibiayi Dagogo-Jack , Justin F. Gainor , Alice Tsang Shaw

Organizations

Massachusetts General Hospital, Boston, MA, Pfizer, Inc., San Diego, CA

Research Funding

U.S. National Institutes of Health
U.S. National Institutes of Health, Other Foundation

Background: Lorlatinib is a potent, brain-penetrant ROS1/ALK tyrosine kinase inhibitor (TKI), which has demonstrated efficacy in advanced ROS1 fusion-positive (ROS1+) non-small cell lung cancer (NSCLC), including in patients (pts) previously treated with crizotinib. Despite initial benefit, however, most pts experience disease progression on lorlatinib. Mechanisms of resistance to lorlatinib in ROS1+ NSCLC are poorly understood. Methods: We analyzed repeat tumor biopsies derived from advanced ROS1+ lung cancer pts progressing on lorlatinib. Next-generation sequencing (NGS, n = 17) or whole exome sequencing (n = 1) was performed to detect mutations, indels, and copy number alterations. Results: Sixteen pts underwent a total of 18 repeat tumor biopsies after progression on lorlatinib. Fourteen had received prior crizotinib; two received prior crizotinib and entrectinib. Median duration of therapy on lorlatinib was 13.5 months (95% CI, 8.3-18.4). Among the 18 cases analyzed by sequencing, 7 (38.9%) harbored a ROS1 resistance mutation, including G2032R (4/18, 22.2%), S1986F/L2000V (1/18, 5.6%), L2086F (1/18, 5.6%), and G2032R/S1986F/L2086F (1/18, 5.6%). Of note, ROS1 L2086F was a novel resistance mutation not previously reported in the literature, but analogous to ALK L1256F (a lorlatinib-resistant ALK mutation). Structural modeling studies showed that ROS1 L2086F causes steric interference with binding of lorlatinib, as well as crizotinib and entrectinib. In addition to ROS1 kinase domain mutations, NGS analyses also identified MET copy number gain in a lorlatinib-resistant case, validated by fluorescence in situ hybridization as high-level focal MET amplification (MET/CEP7 copy number ratio 6.3) without a concomitant ROS1 resistance mutation. Duration of therapy on lorlatinib was significantly shorter in pts with a post-lorlatinib ROS1 resistance mutation compared to those without (8.3 vs 18.1 months; p = 0.005). Conclusions:ROS1 resistance mutations are observed in over one-third of cases progressing on lorlatinib, including the solvent front mutation G2032R and a novel L2086F mutation. These findings underscore the importance of developing next-generation ROS1 TKIs with activity against ROS1 mutations, and the need to elucidate ROS1-independent resistance mechanisms.

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2020 ASCO Virtual Scientific Program

Session Type

Poster Session

Session Title

Lung Cancer—Non-Small Cell Metastatic

Track

Lung Cancer

Sub Track

Metastatic Non–Small Cell Lung Cancer

Citation

J Clin Oncol 38: 2020 (suppl; abstr 9611)

DOI

10.1200/JCO.2020.38.15_suppl.9611

Abstract #

9611

Poster Bd #

377

Abstract Disclosures

Similar Abstracts

Abstract

2022 ASCO Annual Meeting

Treatment patterns and outcomes in ALK or ROS1 altered NSCLC: An ATOMIC Registry Study.

First Author: Melina Elpi Marmarelis

First Author: Jialei Wang

First Author: Todd Michael Bauer