PD-L1 expression landscape and its relationship with tumor mutation burden in Chinese cancer patients.

Authors

null

Haihua Yang

Department of Pulmonology, Huashan Hospital, Fudan University, Shanghai, China

Haihua Yang , Longgang Cui , Yuzi Zhang , Zhengyi Zhao , Yuezong Bai , Wenzhuan Xie

Organizations

Department of Pulmonology, Huashan Hospital, Fudan University, Shanghai, China, The Medical Department, 3D Medicines Inc., Shanghai, China, Medical Department, 3D Medicines Inc., Shanghai, China

Research Funding

No funding received
None

Background: Little is known about the pan-cancer PD-L1 expression landscape in Chinese patients although PD-L1 expression has been approved by FDA as a diagnosis for anti-PD-(L)1 therapy in several types of cancer. We did a cross-sectional analysis to assess the PD-L1 expression landscape in Chinese patients and its relationship with Tumor mutation burden (TMB). Methods: Tissue samples were collected from more than 8,000 consecutive cases in China between January, 2017, and August, 2019 and were analyzed by 3D Medicines, a College of American Pathologists (CAP)-accredited and Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. The method for NGS sequencing and tumor mutational burden (TMB) measurement were described previously. Clinical data and PD-L1 expression profiles were obtained from 8,063 patients whose tissue samples assed quality control. IHC staining for PD-L1 expression was performed using PD-L1 IHC 22C3 pharmDx assay (Dako North America, Carpentaria, CA, U.S.) or Ventana PD-L1 SP263 assay (Ventana Medical Systems, Tucson, AZ, U.S.). PD-L1 expression was determined using Tumor Proportion Score (TPS), the percentage of viable tumor cells stained. Results: PD-L1 expression was examined for 8,063 tissue samples collected from more than 18 different types of solid tumors. There were 4,866 (60%) male and 3,197 (40%) female patients. Their median age was 59 (IQR range, 50-66) years. Given the significance of different cut-points of PD-L1 expression in predicting clinical outcomes, expression levels of PD-L1 were arranged into the following intervals: < 1%, 1%-5%, 5%-50% and ≥50% for each cancer type. Small cell lung cancer (SCLC) had the lowest and Squamous Carcinoma of Head and Neck (HNSC) had the highest levels of PD-L1 expression. Spearman correlation analysis indicated no correlation between PD-L1 and tumor mutational burden (TMB) for Chinese cancer patients (R = 0.1, P < 0.01), which is in line with the previous reports that PD-L1 and TMB were two independent predictors in immunotherapy. Conclusions: The landscape of PD-L1 expression among Chinese cancer population in this study will further assist the utilization of PD-L1 as a predictive biomarker in clinical practice.

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2020 ASCO Virtual Scientific Program

Session Type

Publication Only

Session Title

Publication Only: Developmental Therapeutics—Immunotherapy

Track

Developmental Therapeutics—Immunotherapy

Sub Track

Tissue-Based Biomarkers

Citation

J Clin Oncol 38: 2020 (suppl; abstr e15267)

DOI

10.1200/JCO.2020.38.15_suppl.e15267

Abstract #

e15267

Abstract Disclosures

Similar Abstracts