Memorial Sloan Kettering Cancer Center, New York, NY
Sangkyu Lee , Joseph O. Deasy , Jung Hun Oh , Antonio Di Meglio , Sandrine Boyault , Marina Rousseau-Tsangaris , Celine Besse , Emilie Thomas , Anne Boland-Augé , Paul H. Cottu , Olivier Tredan , Christelle Levy , Anne-Laure Martin , Sibille Everhard , Patricia A. Ganz , Ann H. Partridge , Stefan Michiels , Jean-Francois Deleuze , Fabrice Andre , Ines Maria Vaz Duarte Luis
Background: Many BC survivors report fatigue. The relevant genomic correlates of fatigue after BC are not well understood. We applied a previously validated machine learning methodology (Oh 2017) to GWAS data to identify biological correlates of fatigue induced after tx. Methods: We analyzed 3825 BC pts with GWAS data (Illumina InfiniumExome24 v 1.1) from the CANTO study (NCT01993498). The outcome of this study was post-tx fatigue 1 year after the end of primary chemotherapy/radiotherapy/surgery using the EORTC C30 fatigue subscale (overall fatigue) and the EORTC FA 12 fatigue domains (physical/emotional/cognitive). For each domain, we limited the study group to those with zero baseline fatigue and defined severe fatigue change as score increase above the third quartile. We tested univariate correlations between severe fatigue in each domain and 496539 SNPs as well as relevant clinical variables. The machine learning prediction model based on preconditioning random forest regression (PRFR) (Oh et al., 2017), was then built using the SNPs with ancestry adjusted univariate p-value < 0.001 and clinical variables with Bonferroni adjusted p-value < 0.05. The model was validated in a holdout subset of the cohort. Gene set enrichment analysis (GSEA) was performed using MetaCore to identify key biological correlates relevant to tx-induced fatigue. Results: Distinct results were found by fatigue domain (table). GSEA showed that the cognitive fatigue model SNPs included biomarkers for cognitive disorders (p = 1.6 x 10-12) and glutamatergic synaptic transmission (p = 1.6 x 10-8). Conclusions: A SNP based model had differential performance by fatigue domain, with a potential genetic role on risk and biology for tx induced cognitive fatigue. Further research to explore biomarkers of tx induced fatigue are needed.
Fatigue domain | Samples (train/holdout, N) | Event rate (%) | Significant clinical variables (N) | SNPs with p< 0.001 (N) | PRFR performance AUC (p) | |
---|---|---|---|---|---|---|
SNP only | SNP + clinical | |||||
Overall | 377/161 | 13 | 0 | 309 | 0.42 (0.89) | NA |
Physical | 283/121 | 19 | 0 | 277 | 0.44 (0.78) | NA |
Emotional | 515/220 | 21 | 3 | 257 | 0.42 (0.96) | 0.42 (0.96) |
Cognitive | 820/351 | 17 | 6 | 299 | 0.59 (0.01) | 0.61 (0.003) |
Funding Source: French National Agency for Research (ANR), Susan Komen for Cure (CCR17483507) to IVZ
Disclaimer
This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org
Abstract Disclosures
2022 ASCO Annual Meeting
First Author: Jiani Wang
2024 ASCO Gastrointestinal Cancers Symposium
First Author: Yan Yang
2024 ASCO Annual Meeting
First Author: Yuanchu James Yang
2023 ASCO Annual Meeting
First Author: Tarek Mohamed Ahmed Abdel-Fatah