Guangdong General Hospital & Guangdong Academy of Medical Sciences, Department of Breast Cancer, Guangzhou, China
Bo Chen , Ning Liao , Guo-Chun Zhang , Yulei Wang , Xiaoqing Chen , Liping Guo , Li Cao , Hsiaopei Mok , Chong-Yang Ren , Kai Li , Minghan Jia , Cheukfai Li , Ling-Zhu Wen , Jiali Lin , Guangnan Wei , Ting Hou , Analyn Lizaso , Jing Liu , Charles M. Balch
Background: HER2 targeted therapy has revolutionized the survival outcomes of early and advanced HER2+ breast cancer (BC). However, among HER2+ patients, the therapeutic response to HER2 inhibitors vary. To understand the molecular mechanism of the variability in therapeutic efficacies, the mutational landscape of HER2+ tumors need to be elucidated. Methods: 107 HER2+ Chinese stage I-III BC patients were included in the study, including 64 HR+ and 43 HR- patients. A majority of the patients were diagnosed with infiltrating ductal carcinoma (99/107). Capture-based targeted sequencing was performed using a panel consisting of 520 cancer-related genes spanning 1.64 MB of the human genome. Results: 1,119 alterations were detected, including 478 single nucleotide variants (SNVs), 14 insertions or deletions, 29 fusions, 593 copy number amplifications (CNA), 2 large genomic rearrangements and 3 CN deletions in 267 genes. Alterations in 99 genes were shared between HR+/HER2+ and HR-/HER2+ tumors; while 123 and 45 genes were only detected in either HR+/HER2+ or HR-/HER2+ tumors, respectively. CNA, splice site and frameshift mutations were significantly more in HR+/HER2+ patients (p= 0.017). Specifically, CNA in SPOP, CCND1, FGF19, FGF3, FGF4, RNF43, RAD51C, ADGRA4 and MDM4 and various alterations in GATA3 were significantly more among HR+/HER2+ tumors (p< 0.05). In addition to HER2 amplifications, concurrent fusions in ERBB2 (67%, 4/6), SNVs in ERBB3 (100%, 3/3) and ERBB4 (100%, 1/1) were more likely to be detected in HR+/HER2+ tumors, while concurrent EGFR amplifications were exclusively detected in HR-/HER2+ tumors. The trend of concurrent mutations was consistent with mutation types detected in HER2- tumors based on HR status, wherein EGFR amplifications were more frequent in HR-/HER2- tumors, while SNVs in EGFR, ERBB2, ERBB3 and ERBB4 were more predominant in HR+/HER2- tumors. Based on KEGG pathway analysis, HR+/HER2+ tumors had more frequent alterations in TGFb (p= 0.007), WNT (p= 0.002) and homologous recombination (p= 0.004) pathways than HR-/HER2+ tumors. Furthermore, our data revealed that HR+/HER2+ and HR-/HER2+ patients had comparable TMB (p= 0.24), with a median TMB of 4.0 mutations/Mb for both. Conclusions: Our study revealed genetic heterogeneity between HR+ and HR- HER2+ tumors. The distinct genetic alterations are potentially relevant in the development of optimal treatment strategies for such patients.
Disclaimer
This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org
Abstract Disclosures
2023 ASCO Annual Meeting
First Author: Tarek Mohamed Ahmed Abdel-Fatah
2023 ASCO Annual Meeting
First Author: Shipra Gandhi
2021 ASCO Annual Meeting
First Author: Laura Schubert
2023 ASCO Annual Meeting
First Author: Nirja Shah