Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
Sinead Toomey , Aoife Carr , Jillian Rebecca Gunther , Joanna Fay , Anthony O'Grady , David Weksberg , Scott W Piraino , Elaine Kay , Brian O'Neill , Sunil Krishnan , Simon J Furney , Bryan Hennessy
Background: Locally advanced rectal cancer, LARC (T3/4 and/or N+) is currently treated with neoadjuvant chemoradiotherapy (NACRT), however clinicopathological response is variable. Monitoring clonal evolution in response to NACRT may identify mutations driving therapeutic resistance or tumor growth after treatment. Methods: Fresh-frozen pre- and post-NACRT tumor and matched normal tissue from LARC patients were stratified into good (RCPath A), intermediate (RCPath B) and poor (RCPath C) responders. Following histological review, targeted exome capture was performed using an Agilent SureSelect Human all Exome V3 kit. Samples were sequenced to a minimum of 100X coverage on an Illumina HiSeq2000, and clonal evolution was assessed in matched pre- and post-NACRT tumor samples. Results: The median somatic mutation burden in pre-treatment samples was 114 (IQR 19-207). Two tumors were microsatellite (MSI) unstable and had elevated mutational burdens. The least evolution occurred in the poor responders, where there was little change in clonal composition after treatment, and driver mutations in genes including TP53 and APC were retained. On average 79% of pre-treatment mutations were retained post-treatment in poor responders and 33% of mutations were retained in intermediate responders. Many of the intermediate responders had loss of driver mutations including TP53 from the pre-treatment sample, but also shared a number of mutations in genes including PIK3CA and BRAF between pre- and post-treatment samples. There was also increased frequency in the post-treatment samples of clones that were not present in the pre-treatment samples. In one intermediate responder, all 47 mutations that were present in the pre-treatment sample including the driver mutations TP53 and APC were absent in the post-treatment sample, while 10 completely new mutations were identified. Conclusions: Dynamic mutational processes occur in LARC following selective pressures of exposure to NACRT, including changes in somatic mutation presence or frequency after treatment, owing to persistence or loss of sub-clones. As NACRT can profoundly affect the LARC genome, monitoring molecular changes during treatment may be clinically useful.
Disclaimer
This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org
Abstract Disclosures
2024 ASCO Gastrointestinal Cancers Symposium
First Author: Tomohiro Takeda
2023 ASCO Annual Meeting
First Author: Deborah Schrag
2023 ASCO Annual Meeting
First Author: Mitsuho Imai
2024 ASCO Gastrointestinal Cancers Symposium
First Author: Jeanne Tie