Antigen-dependent costimulation to improve T-cell therapy for cancer.

Authors

null

Christopher C. DeRenzo

Center for Cell and Gene Therapy, Texas Children's Cancer Center, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX

Christopher C. DeRenzo, Phuong Nguyen, Stephen Gottschalk

Organizations

Center for Cell and Gene Therapy, Texas Children's Cancer Center, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, Baylor College of Medicine, Houston, TX

Research Funding

Other Foundation

Background: T-cell therapy for cancer faces several challenges, including limited T-cell expansion at tumor sites, and lack of unique tumor antigens that are not expressed in normal tissues. To overcome the first obstacle, we developed Engager (ENG) T cells, which secrete bispecific molecules consisting of single chain variable fragments specific for CD3 and a tumor antigen. ENG T cells have the unique ability to redirect bystander T cells to tumors, amplifying antitumor effects. Costimulatory chimeric antigen receptors (CoCARs) are one potential strategy to restrict full T-cell activation to tumor sites that express a unique "antigen address." The goal of this project was now to generate T cells that express engager molecules and CoCARs (ENG/CoCAR T cells), which recognize distinct tumor antigens, and evaluate their effector function. Methods: We focused on two tumor antigens, EphA2 and HER2, which are expressed in a broad range of solid tumors. RD114-pseudotyped retroviral particles encoding an EphA2-ENG or a HER2-CoCAR were used to transduce CD3/CD28-activated human T cells. Transduced T cells were cocultured with EphA2+/HER2- or EphA2+/HER2+ tumor cells. Results: Both EphA2-ENG and EphA2-ENG/HER2-CoCAR T cells were activated by EphA2+ targets, as judged by IFNγ secretion. EphA2-ENG T cells secreted little IL-2 and died after one stimulation with EphA2+/HER2- or EphA2+/HER2+ tumor cells. In contrast, EphA2-ENG/HER2-CoCAR T cells secreted high levels of IL-2 and proliferated when stimulated with EphA2+/HER2+ cells. Little IL-2 secretion and no proliferation was observed after stimulation of the same T cells with EphA2+/HER2- cells, indicating these T cells are only fully activated in the presence of both target antigens. Upon repeated stimulation with EphA2+/HER2+ tumor cells, EphA2-ENG/HER2-CoCAR T cells continued to secrete IL-2 and proliferate without the addition of external cytokines for at least 10 weeks. Conclusions: EphA2-ENG/HER2-CoCAR T cells demonstrated robust dual antigen dependent IL-2 secretion, and continued proliferation upon repeat stimulation with EphA2+/HER2+ cells. Thus, providing antigen-specific costimulation is a potential strategy to improve the safety and efficacy of T-cell therapy for cancer.

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2017 ASCO-SITC Clinical Immuno-Oncology Symposium

Session Type

Poster Session

Session Title

Poster Session A

Track

Biomarkers and Inflammatory Signatures,Humoral Immunity for Diagnosis and Therapy,Immune Checkpoints and Stimulatory Receptors,Modulating Innate Immunity,Therapies Targeting T cells

Sub Track

Adoptive T-cell therapy: Modified and Unmodified Cells

Citation

J Clin Oncol 35, 2017 (suppl 7S; abstract 151)

DOI

10.1200/JCO.2017.35.7_suppl.151

Abstract #

151

Poster Bd #

G10

Abstract Disclosures