DNA vaccine with pembrolizumab to elicit antitumor responses in patients with metastatic, castration-resistant prostate cancer (mCRPC).

Authors

null

Douglas G. McNeel

University of Wisconsin, Madison, WI

Douglas G. McNeel, Jens C. Eickhoff, Robert Jeraj, Mary Jane Staab, Jane Straus, Brian Rekoske, Glenn Liu

Organizations

University of Wisconsin, Madison, WI, University of Wisconsin Carbone Cancer Center, Madison, WI, Department of Medical Physics, University of Wisconsin, Madison, WI, University of Wisconsin-Madison, Madison, WI

Research Funding

Other

Background: We have previously investigated a DNA vaccine encoding prostatic acid phosphatase (PAP, pTVG-HP) in patients with PSA-recurrent prostate cancer, and have demonstrated that this can be safely administered over many months and can elicit PAP-specific T cells. A phase 2 trial is currently underway. In preclinical models, we have found that blockade of regulatory receptors, including PD-1, at the time of T cell activation with vaccination produced anti-tumor responses in vivo. Similarly, we have recently found that patients with prostate cancer previously immunized with a DNA vaccine develop PD-1-regulated T cells. These findings suggested that combined PD-1 blockade with vaccination should elicit superior anti-tumor responses in patients with prostate cancer. Methods: A clinical trial was designed to evaluate the immunological and clinical efficacy of pTVG-HP when delivered in combination or in sequence with pembrolizumab, in patients with mCRPC. Serial biopsies, blood draws, and exploratory FLT PET/CT imaging are being conducted for correlative analyses. Results: While trial accrual continues, 1 of 14 subjects has experienced a grade 3 adverse event. There have been no grade 4 events. Several patients treated with the combination have experienced serum PSA declines, and several have experienced decreases in tumor volume by radiographic imaging at 12 weeks, including one partial response. Expansion of PAP-specific Th1-biased T cells has been detected in peripheral blood samples. Exploratory FLT PET/CT imaging has demonstrated proliferative responses in metastatic lesions and in vaccine-draining lymph nodes. Evaluation of biopsy specimens for recruitment of antigen-specific T cells is currently underway. Conclusions: PD-1 pathway inhibitors have demonstrated little clinical activity to date when used as single agents for treating prostate cancer. Our findings suggest that combining this blockade with tumor-targeted T-cell activation by a DNA vaccine is safe and can augment tumor-specific T cells, detectable within the peripheral blood and by imaging, and result in objective anti-tumor changes. Clinical trial information: NCT02499835

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2017 ASCO-SITC Clinical Immuno-Oncology Symposium

Session Type

Poster Session

Session Title

Poster Session A

Track

Biomarkers and Inflammatory Signatures,Humoral Immunity for Diagnosis and Therapy,Immune Checkpoints and Stimulatory Receptors,Modulating Innate Immunity,Therapies Targeting T cells

Sub Track

Vaccines: Treatment and Prevention

Clinical Trial Registration Number

NCT02499835

Citation

J Clin Oncol 35, 2017 (suppl 7S; abstract 168)

DOI

10.1200/JCO.2017.35.7_suppl.168

Abstract #

168

Poster Bd #

J7

Abstract Disclosures