The Circulating Cell-free Genome Atlas (CCGA) Study: Size selection of cell-free DNA (cfDNA) fragments.

Authors

null

Darya Filippova

GRAIL, Inc., Menlo Park, CA

Darya Filippova , Matthew H. Larson , M. Cyrus Maher , Robert Calef , Monica Pimentel , Yiqi Zhou , Joshua Newman , Samuel Gross , Virgil Nicula , Ting-Chun Liu , Christopher Yakym , Jennifer Berman , Alex Aravanis , Arash Jamshidi

Organizations

GRAIL, Inc., Menlo Park, CA

Research Funding

Pharmaceutical/Biotech Company

Background: Detection of somatic copy number aberrations in individuals with cancer via cfDNA whole-genome sequencing (WGS) is challenging at low tumor fractions. Given that tumor-derived cfDNA fragments are shorter than those from healthy tissues, this exploratory analysis evaluated the potential effect of size selection on the ability to detect cancer. Methods: CCGA WGS libraries were in silico and in vitro size selected to estimate the change in tumor fraction by tumor types (breast, lung, and colorectal [CRC]) and stage (I-III vs IV). In silico analyses used clinically evaluable training set samples with WGS assay results (n = 1422: 560 non-cancer [NC], 862 cancer [C] stages I-IV); classification (cancer/non-cancer) performance was estimated using fragments within the 90-150 bp range. In vitro analyses used a subset of samples (n = 93: 28 NC, 65 C stages I-IV), including C cases sampled within a range of tumor fractions; tumor fraction was also measured at each progressive removal of maximum-length fragments (intervals of 10 bp: 150 bp down to 50 bp). Results:In silico and in vitro analyses, respectively, resulted in median 2.00±0.58-fold (at 6.91±2.64X depth) and 2.00±0.52-fold (at 23±4.45X depth) increases, in overall tumor fraction (compared to non-size-selected 36X depth). This was consistent across tumor types (in silico: 1.78±0.73 breast, 2.00±0.58 CRC, 2.00±0.41 lung; in vitro: 2.00±0.82 breast, 2.51±0.52 CRC, 2.53±0.94 lung) and stages (in silico: 2.00±0.74 I-III, 1.78±0.52 IV; in vitro: 2.00±0.55 I-III, 1.68±0.29 IV). Tumor fraction increased with initial fragment length titrations, but not following size selection to shorter lengths ( < 140 bp). Classifier trained on in silico size-selected data had increased sensitivity at 98% specificity compared to those trained on non-size-selected data (p < 1e-5). Conclusions:In silico and in vitro size selection consistently increased tumor fraction across cancer types and stages, and this increase was maximized by tuning the length range of size selection. Relative to full-depth data, classification performance improved significantly. These data suggest that size selection targeting cfDNA under 140 bp may enhance cfDNA-based cancer detection. Clinical trial information: NCT02889978

Disclaimer

This material on this page is ©2024 American Society of Clinical Oncology, all rights reserved. Licensing available upon request. For more information, please contact licensing@asco.org

Abstract Details

Meeting

2019 ASCO Annual Meeting

Session Type

Poster Session

Session Title

Developmental Therapeutics and Tumor Biology (Nonimmuno)

Track

Developmental Therapeutics—Molecularly Targeted Agents and Tumor Biology

Sub Track

New Targets and New Technologies (non-IO)

Clinical Trial Registration Number

NCT02889978

Citation

J Clin Oncol 37, 2019 (suppl; abstr 3103)

DOI

10.1200/JCO.2019.37.15_suppl.3103

Abstract #

3103

Poster Bd #

95

Abstract Disclosures